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Atomic decompositions and molecules are used to prove some inequalities of
approximation theory in the real Hardy spaces Re H p defined on the one
dimensional torus T or onlR, 0 <P ( J. Considerations are mainly based on a
description of the Re Hp·moduli of continuity by a corresponding K'-functional. In
particular, inequalities of Jackson type are obtained for spline approximation in the
periodic case and for Bochner-Riesz summability in the case of IR.

O. INTRODUCTION

Let Hp(D) (0 <P < 00) be the complex quasi Banach space of analytic
functions F(z) on the unit disc D = {z E C: Iz I< I} for which 1IFIIHp(D) =
sUPr< I {(lj2n)f':,.IF(re it )IPdt Jlip < 00. These spaces were introduced by G.
H. Hardy and F. Riesz and played an important role in the investigation of
the boundary behaviour of analytic and harmonic functions and in Fourier
analysis (cf. [8, 15, 31], where the basic properties of Hp(D) are described).
For instance, if F(z) E Hp(D) for some p >0, then there exists a.e. on the
torus T= (-n, n] the limit F(e it ) = limr..... l _ F(re it ), and IF(eit)1 belongs to
the Lebesgue space Lp(T) of all real·valued, 2n-periodic measurable
functions f(t) satisfying Ilfllp = {(lj2n)f':,.lf(t)IP dtJIIP < 00. As usual,
Loo(T) denotes the space of all bounded measurable 2rr-periodic real
functions with the corresponding norm.

Now the definition of Re HiT) will be given. A real-valued distribution
u(t) E fIJ"(T) belongs to Re Hp(T) (0 <p < 00) iff there exists a function
F(z) E Hp(D) with the properties 1m F(O) = 0 and u(t) =limr.... l _ Re F(re it )

in the sense of distributions (if p ~ 1 then Re Hp(T) can be treated as a
subspace of Lp(T), and u(t) = Re F(e it». Equipped with the quasi norm
II u IIRel/pIT) = IIFIIHp(D) the class Re Hp(T) obviously becomes a real quasi
Banach space with quite the same properties as Hp(D). It is well known that
for I <P < 00 Re Hp(T) coincides with Lp(T), while for 0 <p <, 1 Re Hp(T)
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and Lp(T) lead to different scales of function spaces. In the following it is
this case that will be considered.

The by now classical investigations by G. H. Hardy, F. and M. Riesz, J.
E. Littlewood and others of Hp(D) (and Re HiT)) employed complex
methods and showed that, for several problems in Fourier analysis, the use
of the Hp-scale (0 <p ~ 1) is preferable over that of the Lp-scale. During the
past 15 years a powerful theory of Hp spaces (0 <p ~ 1), especially in the n
dimensional case, has been developed by means of real methods (maximal
functions, decomposition techniques, atoms, molecules, etc.), and various
new applications to Fourier analysis and singular operators have been given;
cf. [6, 9, 27, 28].

However, concerning approximation properties (for instance, inequalities
of Jackson type) only few results are known. We refer to the papers by E. A.
Storoienko [21-25], where special integral representations and complex
techniques have been used to obtain estimates of the following type. Let
F(z) E HiD), 0 <p ~ 1, and let a~F(z) be the nth (C, a)-mean of the power
series of F(z). Then, for n = I, 2,... , we have [23]

IIF - a~FIIHp(D) ~ Cp •a · W (: ,Ft
p

I, a>l/p-l,

(In n)IIP, a = l/p - I, (0.1)

n l /
p

-
1

- a , -l<a<l/p-l,

ihwhere w(t5, F)Hp= SUPO.;h<;;h IIF(z) - F(ze )IIHp(DP 0 ~ t5 ~ n, denotes the
corresponding modulus of continuity (here and in the following C, Cp ,

Cp.a , ... , denote positive constants depending on the cited parameters only
and changing their concrete values from line to line). Analogous results were
established for other summation methods (cf. [21-24]). In [23, 25] the
Jackson-type inequality

inf IIF - PnIIHp(D) ~ Cp,k.ln + 1)-1 . wk (.-!!..-1 ,F(O) (0.2)
P"(Z)=LJ'~OajZj n + H

p

(n = 0,1,..., F(l)(z) E Hp(D), 0 <p ~ 1, 1=0,1,...) with moduli of continuity
of arbitrary order k = 1, 2,... , was proved. Some generalizations of (0.1),
(0.2) to Hardy spaces on the polydisc were given by J. Valasek [29].

In this paper we intend to prove some further approximation properties in
the spaces Re Hp(T), 0 <p ~ 1, by using atomic representations and
molecules. Our considerations are based on the relation
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where u(t) E Re Hp(T), °<p ( 1, k = 1,2,..., and c5 E [0, n]. This two-sided
inequality is the analog of a well-known assertion for Lp(T), 1 (p < 00, cf.
[10, 14], the notation A ::=::a.Il •...• B means both A (Ca •6•.•• • Band
B ( Ca.6 .... • A. The proof of (0.3) will be furnished in Section 2, in
particular, we use inequality (0.2) for 1=0.

In Section 3 a Jackson-type inequality will be established for the approx
imation of u(t) E Re Hp(T) by the partial sums p~m)u(t) of its Fourier series
with respect to the periodic orthonormal spline systems F(m) (m =0, 1,... ,)
introduced by Z. Ciesielski (cf. [2-4], our notations are different from those
given in these papers, for details see Section 1). Recently, we have proved the
systems F(m) to be Schauder bases in ReHp(T) for (m + 1)-1 (p( 1 (see
[12, 13]). Analogous results have independently been obtained by P. Sjolin,
J.-O. Stromberg [17, 18], and P. Wojtaszczyk [30] (in addition, these
authors proved unconditional convergence for p > (m + I) - 1).

The inequalities

lIu - p~m)uIlReHp(T) (Cm • w m+ l(nln, U)ReHp' n = 1,2,... , (0.4)

given in this paper (cr. Theorem 2 in Section 3) estimate the rate of
convergence of the basis expansion for u(t) E Re Hp(T), (m + I) -1 (p ( 1,
m = 0, 1,... , and extend the corresponding assertions for Lp(T), I (p < 00,
and C(T) due to Z. Ciesielski [3].

Furthermore, in Section 3 some properties of best spline approximation in
the classes Re Hp(T), 0< P (1, are discussed (concerning best spline
approximation in L p spaces for p < I, cf. [11]).

Finally, it should be mentioned that our approach can be used for the
Hardy spaces Re Hp(IR), °<p ( 1, on the real line, too. Without going into
detail, an application to the approximation by Bochner-Riesz means of the
Fourier integral of distributions belonging to Re Hp(lR) will be given in
Theorem 3 at the end of Section 3.

1. PRELIMINARIES

Hardy spaces

First the atomic characterization of Re Hp(T), °<p (1, will be
described. A function a(t) E Lq(T), I (q (00, is called (p, q, s)-atom
centered at to E T if P < q, the integer s satisfies s:;;:;: [lip - 1], and

[= 0,... , s.

supp a(t) c J= (to -IJI/2, to +IJI/2],
II a IIq ( IJII/q--I/P,

f
t o+"

a(t) . (t - to)1 dt = 0,
lo-71

IJI (2n,

(1.1 )
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PROPOSITION 1. Let °<p <. 1, 1 <. q <. 00, p < q, and s ~ [lIp - 1].

(a) If u(t) E Re Hp(T) then there exists a decomposition

00

u(t) = L Aj ' ait) (convergence in [)'(T»,
j=O

(1.2)

(1.4 )

(b) Conversely, if Aj and aj(t) are as assumed above then the right
hand side of (1.2) converges in the quasi norm of Re Hp(T) to a certain
u(t) E Re Hp(T), and

\ 00 /I/P

IlullReHp(T) <. Cp,q,S L; IAj\P \ .

The proof of this result is essentially due to R. R. Coifman [5 J (cf. also [6,
27], the considerations in the periodic case are quite the same as for IR or
IR N

, N> 1).
Following [6, 27], a function m(t) E Lq(T) is said to be a (p, q, s)

molecule centered at to E T if there exists some e > max(s, lip - 1) so that
with a = 1 - lip +e and fJ = 1 - 11q + e we have

N(m) = II m 11://3 . II m(t) . dT(t, to)/3II~ -al/3 < 00,

f
'o+/t

m(t) . (t - to)/ dt = 0, 1= 0,..., S.
10-.'[

(1.5)

(By dT(t, t') we denote the periodic distance of t, t' E T, Le., if t, t' are taken
in the interval (-n, n J then dT(t, t') = min(l t t' I, 2n -I t - t' I).)

PROPOSITION 2. Let p, q, s be as above. If m(t) is a (p, q, s)-molecule
then m(t) E Re HiT), and

IlmllReHp(T) <. Cp,q,e' N(m). (1.6)

The proof of (1.6) runs as in [27] where the case of IR N is considered. It
should be mentioned that for applications the most interesting cases are
q = 00, q = 2, and q = 1.

Spline Systems

Let n 1,2,.... The dyadic partitions

nn = {-n < sn,l < ... < sn,n-l < sn,n = n}
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of T are defined by setting

49

S . = -n +n . 2 -k • i,n,l

21- k ( .)=n-n· . n-l,

i = 1,... ,21,

i = 21 + 1,..., n,

for n = 2k + 1> 1, where 1= I,..., 2k and k = 0,1,.... Furthermore, we put
Sn,jn+i = sn.i' S~Jn+i = sn.i + 2n . j for i = 1,..., nand j = 0, ± 1,....

For m = 0, 1,... , we denote by s~m)(T) the n-dimensional subspace of
c(m-I)(T) (of Loo(T) if m = 0) consisting of all periodic spline functions of
degree m with respect to nn' i.e., g(t) E s~m)(T) whenever g(t) coincides with
a certain algebraic polynomial of degree ~m on each interval (sn.i-I,sn.il
and belongs to Clm-1)(T) if m >0. The corresponding B-splines

00

N<:,/{t) = L N~:J::+lt), t E (-n, nl, i = 1,... , n,
j= -00

where N~jm)(t) == (s~J+m+ I - s~.j) . [s~,j"'" s~.j+m+ I; (s - t)~ j, -00 < t < 00,

have the properties (cf. [7])

supp N~7/(t) = T, n = 1,..., m + I,

n > m + I,
(1.7)

n

L N~~/(t) = 1, N~~/{t) ~ 0, t E T, i = 1,... , n (1.8)
i=1

(the intervals have to be understood as intervals defined on the torus T).
Furthermore, the system {N~~/(t)}, i 1,..., n, forms an algebraic basis in
s~m)(T). By {'!y~~/(t)}, i 1,... , n, we denote its biorthogonal system in
s~m)(T) with respect to the scalar product (. , .) in LiT). From a result of J.
Domsta [7] it easily follows that

1'!y~~/(t)1 ~ Cm • n . qn'dT(Sn.i,t), t E T, i = 1,..., n (1.9)

holds with some constant q (0 <q < 1) only depending on m.
For fixed m == 0, 1, , the periodic orthonormal spline system

F(m) = {f~m)(t)}, n 1,2, , is uniquely determined by the conditions

n = 1,2,....

Fl m) is an orthonormal system in L 2(T),

f~m)(Sn.21_I) > 0, n = 2k + 1~ 2,f~m)(t) = (2n) -1/2.

(1.10)

Concerning this definition and the basic properties of F(ml and its
nonperiodic counterpart we refer to the papers of Z. Ciesielski a.o. (cf.
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[2-4. 7 J. where the notations are somewhat different from those given here).
For instance. F(m) forms a Schauder basis in Lp(T). 1 <'P < 00. The partial
sums p~mlj(t) of the Fourier series with respect to F(ml of a function
f(t) E L 2(T) can be written in the form

n

P:;'lj(t) = L (lJm,,!). fjml(t)
1=1

(1.11 )

Some further properties of F(m) in connection with Re Hp(T) will be stated in
Section 3.

2. MODULI OF CONTINUITY

In this Section, let °<p <. 1. k =0. 1...., and u(t) ERe Hp(T) be arbitrary
but fixed. The function

bE \O,n], (2.1 )

where LI~ u(t) = .E7=o (-1)' (f) . u(t + lh). h~ 0, is called Hp-modulus of
continuity of order k for u(t). Obviously (cf. Section 0). we have

bE [O,n]. (2.2)

where F(z) denotes the corresponding analytic function. The basic properties
of the Hp-moouli (2.1) are similar to those of the usual Lp-moduli of
continuity wk(b,f)p for J(t) E Lp(T) (for p ~ 1 cf. [10], for p < 1, [11, 26J).

THEOREM 1. Let 0< p <. 1, k = 1,2,.... and u(t) ERe HP(T). Then for
bE [0, n] we have

wk(b, U)ReHp~ inf k 1IIu - gllReHp(T) + f/ 'IIDkgllReHp (T)}' (2.3)
g(t)eReHp(T)

where

Re H;(T) = 1get) ~ l=~OO Clellt E {?tJ'(T): Dkg(t)

'" '];00 (il)k CleW E Re Hp(T)t .
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Proof First we consider any g(t) E Re H~(T). Let q = 00,

s = [lip - I] + k, and

00

Dkg(t) = .L Aj . aj(t),
j=O

(2.4)

be the decomposition of Dkg(t) into (p, q, s)-atoms according to
Proposition 1. Since (a j , 1) 0, j = 0, 1,..., we can introduce unique
functions Ai!) E Loo(T) satisfying the relations (A j' 1) = ° and
ait)=DkAit) in the sense of !!IJ'(T) and a.e. on T. For instance, if
j = 1,2,... then

where to.j is the center of the supporting interval Jj of aj(t) (cf. (1.1 ».
Moreover, from the assumed facts we easily obtain that the functions
IJj 1- k Ait), j = I, 2,..., are (p, 00, [lip - 1])-atoms with the same supporting
intervals Jj , and that IAo(t)1 <, (271')\ t E T. Therefore,

00

g(l)=co+ .L A'j' Ail) (in the sense of !!IJ'(T» (2.6)
j=O

represents a corresponding atomic decomposition for g(t), and

II gIIReHp(T) <, Cp jlColP +j~ IJjl kP IAj /P ~ lip

< 00 (Jo = T). (2.6)

(Actually, we could show somewhat more, namely, that g(t) belongs to
ReHp{O_kp)(T) for kp < 1, and to C(T) for kp ~ 1. which gives the real
variant of a classical assertion of G. H. Hardy and J. E. Littlewood (cf.
[8]).)

Furthermore, we have

HL1ZulI~eHp(T) <, 1IL1~(u - g)lI~eHp(T) + 11L1~ gll~eHp(T)

<, Ck.p ~HU -gll~eHp(T) +j~ IAjlP '11L1ZAjll~eHp(T)l· (2.7)

According to the above considerations on the Ait)'s we obtain for IJjl <, c3

IIL1ZAjll~eHp(T) <, Ck,P lIAJ~eHp(T) <, Ck,pl JjlkP

<, Ck •
P

• c3kp
• (2.8)
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Now, let a< IJjl ~ nl(k + 1). Then we have (0 ~ h ~ a)

supp AZAit) c J; = (to,j -IJj I/2 - ka, to,j + IJjl/2 + kaj,

IIA~Ajlloo ~ hk II aj II 00 ~ ak ·IJjl lip ~ Ck · ak 'IJ; I-liP, (2.9)

and

[=0" .., [lip-I].

Thus, by Proposition 1 this again yields (2.8) for hE [0, a] at most. Finally,
if IJj I;;;;: max(0, nl(k + 1» then the obvious inequality

IIJ~AjIIReHp(T) ~ Cp '1ILI~AJoo'

together with (2.9) give the desired estimate (2.8) for h E [0, a] and arbitrary
j=O,I,....

Now, from (2.7), (2.8), and Proposition 1 it easily follows that

wk(a, U)ReH ~ Ckp inf k {Ilu - gilReH (T) + Ok. IIDkgllReH (T)}'p . g(t)EReHp(T) p p

Hence (2.3) is established in one direction.
The inverse inequality will be obtained as a corollary to the Jackson-type

inequality (0.2) for HiD). Let n = 0, 1,..., be defined by the relation
n/(n + 1) ~ a< nln. From (0.2) with [=°and the definition of Re Hp(T) it
follows that there exist a complex polynomial Pn(z)(Im Pn(o) = 0) and a real
trigonometric polynomial Tn(t)(= Re Pn(e it», satisfying

IIF - PnIIHp(D) = Ilu - Tn liRe Hp(T) ~ Ck,pWk(r5, U)ReHp' (2.10)

For estimating IIDkTnIIReHp(T) we shall use the relation

IIDkTnllp ";.!Z (n + l)-k wlrcl(n + 1), Tn)p, (2.11)

independently obtained for 0< p < 1 by E. A. Storozenko [24 j and V. I.
Ivanov (unpublished). For instance, (2.11) can be proved by appropriately
using the Taylor expansion of Tn(t) and the inequality of Bernstein type for
S,(T)(cf. [26, T.heorem 3.2 and Lemma 3.1 D. The details will be omitted. If
Tn(t)(= 1m Pn(e 't» denotes the conjugate trigonometric polynomial then
(cf. (2.11), the relation between Re Hp(T) and Hp(D), and (2.2»

IIDkTnllkeHp<T) ~ IIDkTnll~ + IIDki"nll~

~ Ck.p · (n + l)kP{wk(nl(n + 1), Tn)~ + wk(n/(n + 1), fn)~}

~ Ck.P. a-kPwk(J, Pn)~p = Ck.P • a-kPwk(a, Tn)keHp'
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Thus, we get

Ok '1IDkTIIReHp(T) ~ CP,kWk(O, Tn)ReHp

~ Ck,p{llu - TniIReHp(T) +Wk(O, U)ReHp}'

53

which together with (2.10) gives the desired result. Theorem 1 is completely
proved.

Remark 1. Theorem 1 gives an explicit characterization of the K- and
K'-functionals for real interpolation between the spaces Re Hp(T) and
Re H;(T), 0 <p ~ 1 (for definitions cf. [1, 10]). Results of this kind are well
known for the Lp-spaces, I ~ p < co [10, 14]. As an easy consequence, (2.3)
yields that for 0 <p ~ 1,

(Re HiT), Re H;(T))e.q = B;~q(T)

= Ig(t) E Re Hp(T): II gIIB:.~ = II gllReHp(T)

If"Wk(t, g)leHp
dt \ I/q t+ ekq+1 < co ,

• 0 t

where 0 < q < co, 0 <e< I (modification if q = co). This fact seems to be
known (cf. [28] for the corresponding R N-resu1ts).

Probably, further applications of Theorem 1 might be given. For example,
the following nonobvious property of the Hp-modulus of continuity can
immediately be proved by (2.3):

If u(t) E Re Hp(T), u(t) '* const., 0 <p < 1, then
wk(b, U)ReHp~ Cp,k,u(t) . fl, 0 E [0, n], k::::: 1,2,.... (2.12)

Thus, the saturation properties of the Hp-moduli of continuity differ from
those of the moduli of continuity for the corresponding Lp-spaces, 0 <p < 1
(cf. [11,26]).

Remark 2. It would be of some interest to establish (2.3) by real
methods only, Le., without referring to (0.2). In particular, this might open
the possibility for obtaining N-dimensional analogs of (2.3) for Hp (IR N ) and
Hp(TN

), 0 <P < 1, with the corresponding applications in approximation
theory and related topics.
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3. ApPROXIMATION BY SPLINES

First let us mention

PROPOSITION 3. Let 0 <p ~ 1, m = 0, 1,.... Then the periodic
orthonormal spline system F<ml (cr. (1.10» forms a Schauder basis for
Re Hp(T) if (m + 1) I ~p ~ 1. More precisely, the partial sum operators
(1.11) can appropriately be extended to Re Hp(T) and satisfy

(m + 1)-1 ~p~ 1,

n = 1,2,.... (3.1)

Proposition 3 was proved in [12, 13 J by using atomic decompositions
only. In [17 J analogous results (inclusively concerning unconditionality)
were obtained for HiO, 1), P > (m + 1)-1, by a combination of atomic and
maximal techniques while [30] deals with the periodic case and uses the
language of molecules (on the preprint [301 we have been informed only
after the preparation of the main parts of this paper, some of its arguments
would involve technical simplifications in our proof of Theorem 2).

Naturally, there arises the question of estimating the rate of convergence
of the basis expansion with respect to F<m) in the Re Hp quasi norm. The
answer will be given by the following main result of this section.

THEOREM 2. Let m = 0,1,... , u(t) ERe Hp(T), and (m + 1)-1 ~p ~ 1.
Then we have

n = 1,2,.... (3.2)

Proof According to Theorem 1 the estimate (3.2) follows from the
inequalities (3.1) and

n = 1,2,..., (3.3)

where g(t) ERe H;'+ l(T), (m + 1) I S;;p ~ 1. Indeed, by these inequalities
we have

lIu - p~m)ull~eHp(T) ~ lIu - gll~eHp<T) + II g - p~m)gll~eHp(T)

+ IIP~m)(u - g)lI~eHp(T)

~ em • {iju - g!IReHp(T) +n-m- I ·IIDm+lgIlReHp(T)}P

for arbitrary g(t) ERe H;'+ 1(T). Now, by taking the infimum and from (2.3)
we get the desired relation (3.2).
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In order to prove (3.3) we need its analog

II g p~m) gllco ~ Cm. n -m-I IID m+'gll co ' n 1,2,..., (3.4)

for functions g(t) E La/T) with absolutely continuous mth derivative and
Dm+ Ig(t) E Lco(T). Inequality (3.4) was proved in !3] for the nonperiodic
case, this proof also holds with minor changes in the periodic case
considered here.

Now fix arbitrary m =0, I,...,pE [(m + 1)-\ 1), and g(t)E ReH;+'(T).
Let

co
Dm + Ig(t) = I Aj ' aj(t),

j=O

00

g(t) = Co + I Aj' A/t),
j=O

be the corresponding atomic decompositions described in Section 2 (cf.
(2.4)--(2.6) for k = m + 1). Obviously, (3.3) will be proved if we verify the
inequality

Since (cf. (3.4»

and by (3.1) we have

it only remains to check (3.3 ' ) for n;;;:: no, and 2n· n- 1 ~ IJjl ~ Co, where
the choice of no' Co will be clear from the considerations below.

Let aj(t) = a(t) be a (p, co, s)-atom (s = !lIp - I) +m + 1) with these
properties, i.e., 2n.n-l~IJjl=IJI<Co' where Jj=J=(a,p)=
(to -I J1/2, to +IJ1/2) denotes the common supporting interval of both a(t)
and

Let J' = (to -IJ1/2 - 4(m + 1)1 JI, to +IJI/2 +4(m + 1)1 JI). By taking a
sufficiently small Co it can be assumed that IJ'I ~ n/4.

Now, if t E J' then inequality (3.5) gives

(3.6)



56 P. OSWALD

For t E TV' c TV we have (cf. (Lll))

IA(t) - p~m)A (t)1 = IP~m)A(t)1

n

& )' I(A N(m})1 . N(m}(t).
-....::::: .......... '- n,l n,l

i=1

(3.7)

Integrating by part and using (1.9) we obtain the estimate

I(A, N~~/)I = If A (t) . N~~l(t) dt I

= If aCt) f~ (t ~~)m . N~~l@ df, dt 1

13 (fJ - f,)m+ 1
~C 'lIall ·f n· .qn.dr(!.Sn,i1df,.

m 00 a (m + 1)1

Because of q < 1, for s~,i E (to +IJ1/2, to + n] from this relation it easily
follows that

where again 0 <q I < 1. This inequality also holds in the case
S~.i E (to - n, to -IJII2) (employ the analogous estimate

13
I(A,N~~/)I ~ CmIialloo f n· (f,-a)m+l. qn'dT(Sn.i,ll df,).

a

For given t E TV' it can easily be checked that by the definition of the B
splines (cf. (1. 7)) the relation N~~l(t)*0 implies

It - s~,il < 4n . (m + 1)In < !dT(t, J)

and, thus,

But by (1.7) we have N~~/(t)* 0 for m + 1 values of i at most. Therefore,
(3.7) and (3.8) yield

t E TV'. (3.9)

Here, 0 < q2 = q:12 < 1. The estimates (3.6) and (3.9) are sufficient for our
purposes.
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1= 0,... , [lip - 1],

be the moments of A(t) p~m)A (t). Obviously, flo = O. For sufficiently large
no (depending only on m) we can determine spline functions qJt(t) E S~~)(T)

satisfying

t E (to n12, to + nI2),

for 1= 0,... , [lIp - 11. Due to the properties of A(t), qJt(t), and (3.9) we
obtain

+ It (A(t) p~m)A(t». qJt(t)dtI
~ Cm • n-m-IIJI-I/P q~"/8 ~ Cm • n- 3m - 3 IJI- I /P, n ~ no, (3.10)

since

f p~m)A(t) . <fJt(t) dt
T

= J A (t) . p~m) <fJt(t) dt = f A(t) . qJt(t) dt
T A

= f A(t)· (t-to)~dt=O,
J

1= 0,... , !lIp - II, n ~ no'

Let lfIit), j = 0,... , [lip - I], be the unique set of polynomials of order up
to !lIp - 1] satisfying

Obvious, IIlf1jlloo ~ Cm . IJI-j
-

l ~ Cm . nm+ I, and therefore, for the function

B(t) = 0,
[l/p-I]

= L flj' lfIj(t),
j=O

t E TV,

tEJ,
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we get with (3.10)

IIBIIReHp(T) ~ C. liB 1100 ~ Cmn- 2m - 2 . III IIp ~ Cm . n- m- l
• (3.11)

Furthermore, by (3.6), (3.9) for met) = A (t) - p~m)A (t) - B(t) we obtain

J
tO+!f

met) . (t - to)1 dt =PI - PI = 0, 1=0,..., [lip - 1].
[0-71:

(3.12)

Equation (3.12) yields that met) is a (p, 00, [lip - 1])-molecule centered at
to because (cf. (1.5))

N(m) ~ C
m

• Ill-liP. n-m-1 • !Iq~.dT(t.J') . dAt, to)II:x,-«//l

~ Cm . Ill-lIP . n-m- I • ill l/P = Cmn- m- I < 00.

By Proposition 2 and (3.11) we finally obtain

Thus, (3.3') is established (the independence on p of the constant easily
follows by interpolating the endpoint-estimates for p = (m + 1)-1 and p = 1
or by using (p, 00, [lip - 1] + m + 2)-atoms instead of (p, 00, [lip - I] +
m + IJ )-atoms), and the proof of Theorem 2 is complete.

Remark 3. The inequality

n = 1,2,..., (3.13 )

where J(t) E Lp(T), 1~p < 00, was essentially proved by Z. Ciesielski [3J.
For this case he also stated some inverse inequalities (cf. [3, Sect. 9D. Let

E(m)(U)ReH = inf Ilu-gllR H(T)' n= 1,2,...,
n p g(t)ES~m)(T) e p

be the best spline approximation of u(t) E Re Hp(T) with respect to s~m)(T).

Equation (3.2) is equivalent to the Jackson-type inequality

n = 1,2,... , (3.14)

where u(t) ERe Hp(T) and (m + 1) I~p ~ 1. In the case 0 <p < (m + 1)-1
as well as concerning inverse inequalities no results seem to be known at
present.
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However, for m 0 and ~ <p < 1 we are able to state the inequalities
(n == 1,2,... ,)

c .E~O)(U)ReH ~ w 1(I/n, U}ReH (3.15)
e p p

~ C;. n- 1 1t\ EkO)(U)~eHp' kP_1j1/P, u(t) E Re Hp(T).

The first part of (3.15) follows by observing that the restrictions
ai(t) = p~!) u(t) - p~O) P~!) u(t)ltE(s ._ sP i = 1,..., n, have the properties of

n.l 1, n.l

(p, 00, O)-atoms, ~ <p ~ 1 :

suppa;(t) = (Sn,i_pSn,;)=J;, 1,1;/:-: n-\,

Ila/lloo = ~ . IP~!)U(Sn,i) - p~l)u(sn,/_\)I = 1. d/,

i = 1,..., n.

Thus, by Proposition 1(b)

But IA;'21-kPWU(S2k,/)! =d/_\, i = 1,...,2\ and J;.21-kPWU(t) E S~P(T),
hence we have

IIP(!) p(O)p(1) II2k U- 2k 2k U ReHp(T)

~ Cp l/~\ 2 .-kdf riP ~ Cp , IIA;'2I-kP~Pullp

~ Cp • w1(2 -k, PWU)ReHp' k = 0, 1,....

Thus, according to Theorem 2 with m 1, 1<P < 1, for
n = 2+\...,2k + I - 1 (k = 0, 1,... ,) we obtain the estimates

E~O)(U)ReHp

~ E~~)(U)ReHp ~ lIu - p~~)PWuIIReHp(T)

~ Cp{llu - P~VU"ReHp(T) + IIPWu - pi~) PiPuIlReHp(T)}

~ CP {W 2(Z-k, U)ReH
p
+ w\(2 -\ u - P~PU)ReHp +W\(Z-k, U)ReH

p
}

~ Cp . w\(l/n, U)ReHp

This proves the Jackson-type inequality in (3.15).
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In order to verify the inverse inequality we consider an arbitrary step
function get) E S~~)(T) and 0 <h:;;; n· 21

-
k

• Let

After suitable normalization the functions J kgi(t) can be treated as (p, 1,0)
atoms G<p < 1) because we have

Therefore (cf. (1.1) and Proposition 1(b»,
IIJk g!IReHp(T):;;; Cp ' n . h 1i~1 lin ·11 gill~ riP:;;; Cp . n . h ·11 grip

:;;; Cp ' n· h· !I gIIReHp(TP 0 <h <2nln, ~ <p < I, (3.16)

where n = 2\ k = 0, 1,.... This inequality plays the role of a Bernstein-type
estimate.

Relation (3.16) immediately yields

IIJkull~eHp(T)
k

:;;; IIJk(u - g2k)II~eHp(T) + ,"' IIJk(g2i - g2i-l)lI~eHp(T)
l:1

:;;; Cp )11 u - g2kl!~eHp(T) + ;;1 (2 l . h)P 11 g2i - g2i-t\I~eHp(T) {

k

::;:::c ·hP . '\"' 2jp.E~~)(U)RP H 0<h<n·2 1
-

k
, k=O,I,...,

~ p "-' v e p'
j=O

where gn(t) E S~O)(T), n = 1,2,..., are the best approximating step functions,
and easy computations give the second part of (3.15).

Probably, the real methods presented here can be used to settle the general
case, too. For instance, by analogous considerations the inverse inequality

n = 1,2,... , u(t) ERe Hp(T), can be established for arbitrary
(m+2)-1 <p< 1 and m=O, 1,....

Finally, it should be mentioned that the inverse inequalities stated here
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differ from the corresponding estimates for the Lp-spaces, 0 <p < 1,
considered in !11].

Remark 4. Here the nonperiodic case will briefly be considered. The
definitions and basic properties of the Hardy spaces defined on the real line
IR are quite similar to the periodic case (cf. !8] for the classical Hardy space
of analytic functions on the upper half-plane, and [5,27] concerning the
atomic decompositions).

THEOREM I'. Letf(x)EReHp(IR), O<p~ 1, and k= 1,2,.... Then we
have

";: Dkg(X)~W:Hp(l1) {lif- gIIReHp(lR)

+IIDkgIIReHp(lRpJk}, (3.17)

where 0 <J < 00 and the derivative Dkg(t) has to be understood in the sense
of S'(IR).

The proof is analogous to that of Theorem 1 and will be omitted. In the
following we shall concentrate on an application of (3.17) to approximation
estimates for Bochner-Riesz summability. Let J >0, R >,0, and

S~f(x)= f (1 - y2IR2)~ . j(y) . e2,';x.y dy
IR

=n-.s.F(J+1)·f f(x-uIR)
IR

(3.18)
,

be the corresponding Bbchner-Riesz means of the Fourier integral of f(x),
where Ja (s) and j (y) denote the Bessel function of order a and the Fourier
transform off(x), resp. Obviously, the first expression in (3.18) makes sense
for arbitrary f(x) ERe Hp(lR) while the second one holds for fex) E L 1(1R)
at least (cf. [9, 19D. From the results of !16, 20] it follows that in the case
J> lip - 1 the relations

(3.19)

and

lim IIf- S~fIIReH (IR) = 0
R ..... oo p

hold for arbitrary f(x) ERe Hp (IR), 0 <P ~ 1.

640/40/1-5
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We want to state a somewhat stronger result.

THEOREM 3. Let f(x) ERe Hp(P.), 0 <p ~ 1, and 0 > lip - 1. Thenfor
R>O

Proof It suffices to prove the estimate

IIA - S~A IILp(R) ~ Cp .'; • R -I, R >0, 0> lip - 1, (3.21 )

for arbitrary (p, 00, [lip-I] + I)-atoms a(x), where A(x)=J~<X)a(y)dy.

The rest will follow by standard arguments from the Hp-theory (cf. below).
By definition

supp a(x) c J = (to -IJI/2, to + IJI/2),

/IaIlLoo(R) ~ IJI-I/P,

f a(x)· Xl dx = 0,
J

to E IR, IJI < 00,

[=0,..., [lip],

(3.22)

and, therefore, A(x) satisfies the properties supp A (x) c J, II A IIL",< R) ~

IJI I/p+ I, and LA(x)· Xl dx = 0, [= 0,... , [lIp - 1]. Thus, by Coifman's
theorem [5] and (3.19) we obtain the estimate

IIA - S~A iIReHp(R) ~ Cp,,; IIA liRe Hp(R) ~ Cp,,;1 JI,

which yields (3.21) for IJI ~ liR.
On the other hand, from (3.18) we obtain

IA(x) - S~A(x)1

~ C,;' ISR (A (x) - A(x - ulR» . Iul- I
/

2
-'; • J 1/ 2H(lU 1) du 1

~C';'/IaIILoo(R)S If u I12-';.Jlf2H(U)duldY.
J Rlx-YI

According to the asymptotic behaviour of the Bessel functions

Ja.(u) = O(u"), u -+ 0+,

= c" . u- l /2 . cos(u - (a + 1/2). rc/2) + 0(u- 3f2 ), u -+ +00
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(cf. {l9]), we get for ~ >0

/8(S) = If:> u- 1/2
-

8 . J I/2U (U) du I~ C8 • min(l, S-I-8), s> O.

This obviously yields the pointwise estimate

I () S8 ()I I I-liP PIR, Ix - tol ~ 21JI,
Ax - R

Ax ~C8J IIJI.(Rlx-toi)-h5,lx-tol>2IJI,

for the case IJI > liR. From (3.24) it immediately follows that

IIA - S~A IILp(R) ~ Cp •8/JI- IIP \f R -P dxIlx- tol<2IJI

~ > lip - I, IJI> IIR,

and (3.21) is completely proved.
Considering any g(x) E se'(IR) with DIg(x) E Re Hp(IR), let
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(3.24)

00

g(x) = L Aj ' Aix ),
j=1

00

DIg(x) = L Aj ' aj(x),
j=1

be the corresponding atomic decompositions (here aj(x) are (p, 00, [llp])
atoms (cf. (3.22», Aj(x) = f~oo aiy) dy, j = 1,2,..., and

t~1 IAjlP(liP ~ IIDIgIIReHp(R»'

Then according to (3.21) we have

00

II g - S~ gllfp(R) ~ 2..: lA-jlP IIA j - S~A jllfp(R)
j=1

00

~ Cp •8 . R -P . L IAjlP ~ Cp ,8 {R -I • IIDIgIIReHp(R)}P,
j=1

Furthermore, let Xix) denote the Hilbert transform of Aix). Then by the
classical definition of Re Hp(lR) we have

8 8· --s---
/IA j - S RAjIlReHp(R) ~ Cp {IIA j - SRAjIILp(R) + IIA j - SRAjIILp(R)}'
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But S1'A:;(x) = S~A/x), and D'Aj(x) = a/x) ERe Hp(IR)(as the Hilbert
transform of an atom). Thus, by (3.25) we obtain

IIA j - S~AjIlReHp(lR) ~ Cp,~R 1 {llaJReHp(lR} + lI aj IIReHp (lR)l ~ Cp.~R -1,

from which it follows by repeating the above considerations that

R > 0, (3.26)

Together with Theorem I' (k = 1), (3.19) and (3.26) imply the desired
inequality (3.20). The proof of Theorem 3 is complete.
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